1. 原空压站电气控制系统存在的问题
(1)原控制系统工作过程
某机车车辆厂空压站原先采用继电器控制系统对5台空压机组的进行控制。每台机组均有一个起动柜实施Y-△降ya起动,系统仅有手动操作方式。在原系统中,1#、2#为主工作空压机组(功率各为110KW),2台空压机组按一定的周期轮流工作。3#~5#为备用空压机组(功率各为30KW),当1#或2#空压机组工作而系统仍供气压力不足时,将起动其中1台乃至3台直到满足供气压力为止。
(2)原控制系统存在主要问题
①各工作机组虽然采取Y-△减压起动,但起动时的冲击电流仍较,严重的影响到了电网的稳定运行和空压站周围其它用电设备运行的可靠性、安全性;
②当主空压机组处于工频运行时,空压机运行时噪音大,对周围造成严重的声音环境污染;
③主电机工频起动对设备的冲击大,电机轴承易磨损,机械设备的维护工作量;
④主空压机组经常处于空载运行,浪费电能现象严重,很不经济;
⑤空压机组控制系统采用继电器控制,只有手动操作方式,因此控制系统工作的可靠性、安全性较差,人员操作麻烦,自动化水平低、生产效率不高。
2. 改造技术要求
实施技术改造后系统应满足的主要技术要求如下:
(1)三相异步电动机变频运行时应保持供压系统出口压力稳定,压力波动范围不能超过±0.1Mpa;
(2)控制系统可以选择在变频和工频两种工况下运行;
(3)系统采用闭环控制,具有闭环模拟量回路的调节功能;
(4)一台变频器可拖动两台主空压机组,可使用操作按钮进行切换;
(5)根据空压机组的工况要求,系统应保证拖动的交流三相异步电动机具有恒转矩的运行特性;
(6)为了防止高次谐波干扰空压机组变频器,变频器的输入端应当具有抑制电磁干扰的有效措施;
(7)在供压系统用气量较小的情况下,变频器处于低频运行时,应保障电机绕组温度和电机的噪音不超过允许的范围;
(8)考虑到控制系统今后的扩展和升级,变频器的容量和主控制器输入输出点数应当有适当的裕量,以满足将来工作状况扩展的要求。
3. 控制系统总体方案设计和控制原理简介
根据系统原先存在的问题并考虑到技术改造后的生产工艺要求和技术要求,空压机组采用PLC作为主控制器并扩展模拟量输入/输出模块,由变频器拖动主空压机组,采用触摸屏作为系统人机界面的总体设计方案。
控制系统由PLC基本单元扩展出模拟量输入/输出模块,通过压力传感器(变送器)实时检测压力值送入模拟量模块进行PLC内部的PID调节运算,然后由模拟量输出模块输出直流0~10V的电压信号至变频器,变频器的输出频率信号通过模拟量输出端子回送到PLC,构成模拟量闭环控制回路。由压力反馈测量置与压力设定值进行比较运算,经PID调节运算实时控制变频器的输出频率,从而调节三相异步电动机的转速,使供气系统空气压力稳定在压力设定值上。通过变频器PU接口的RS-485串行通信可以读入除频率外的变频器的其它运行参数,如电流、电压和功率等。
这样由PLC、变频器、三相交流异步电动机、压力传感器(变送器)等组成压力反馈闭环控制系统,能够自动地调节三相交流异步电动机的转速,使供气系统空气压力稳定在设定范围内,实现空压站的恒压控制。
控制系统的硬件选型和设计
1. 系统的主要控制要求
采用PLC控制进行空压站技术改造后,系统的主要控制要求如下:
(1)控制系统有手动和自动两种方式。在自动运行时(可预先设定变频器控制的机组,1#或2#机组)根据压力传感器输出的模拟电流信号(4~20mA)由PLC进行PID调节运算,控制变频器在25~50Hz之间节能地运行。
3#~5#机组的控制要求为:①当管道压力低于工作压力下限值(预先设定)并且变频器输出频率在上限值(可预先设定)时,经过延chi(延chi时间可设置)由PLC控制3#、4#其中一台机组起动,直至3#~5#机组全部起动;②当管道压力大于工作压力上限值(预先设定)并且变频器输出频率在下限值(可预先设定)时,经过延chi(延chi时间可设置)按照“先起先停”的原则由PLC停止3#~5#中已经运行的一台机组。同样,在上述工作压力和变频器输出频率两条件不变时,可继续停一台空压机组直到停完所有备用的空压机组;
(2)压力信号取自压力变送器,工作压力上下限可由PLC设置;
(3)手动工作时只有3#、4#、5#机组的起、停可以通过手动按钮操作,其它工作情形和自动工作方式时一样;
(4)变频器在PID调节故障时可以使用电位器进行人工调速;
(5)人机界面要求。变频器的运行监视参数可通过RS-485串行接口,经PLC由触摸屏进行远程显示。机组的起、停延chi间可通过触摸屏修改(20~600s)。
2. 系统的硬件选型
根据控制要求和控制规模的大小,这里选用三菱公司的FX系列小型PLC作为系统的主控制器,通讯扩展板选用FX1N-485-BD,变频器选用三菱的FR-A700系列,触摸屏选用F940系列,压力传感器则选择TPT503压力传感器。
(1)系统的主控制器——FX1N-40MR。FX1N系列属于FX系列PLC中普及型的子系列,经过扩展适当的模拟量模块并使用PID指令,完全可以满足对中等规模空压站控制系统闭环模拟量的控制要求。根据系统的控制规模和对I/O点数的要求,这里系统的控制器选择的是FX1N-40MR,为继电器输出型,有24点开关量输入,16点开关量输出。
FX1N系列PLC在加装了通信扩展板FX1N-485-BD后,通过网线与变频器的PU接口相连后可与之进行PU接口的RS-485串行通信,变频器的运行监控参数,如电流、电压和功率等都可读入到PLC中。
(2)模拟量输入/输出模块——FX0N-3A。FX0N-3A模拟量输入/输出混合模块有两个模拟量输入通道(0~10V电压或4~20mA电流)和一个模拟量输出通道。输入通道接收模拟信号并将模拟信号转换成数字值,输出通道将内部数字值转换成对应比例的模拟信号。输入/输出通道选择的电压或电流形式由用户的接线方式决定。FX0N-3A可以连接到FX2N、FX2NC、FX1N、FX0N等系列的PLC上。
FX0N-3A的分辨率为8位。FX0N-3A在PLC扩展母线上占用8个I/O点。这8个I/O点可以分配给输入或输出。所有数据传输和参数设置都是使用PLC中的FROM/TO指令,通过编程调节控制的。PLC基本单元和FX0N-3A之间的通信由光电耦合器进行保护。自动化控制柜
电子工业的不断发展,让今天的处理器、电路板及元器件尺寸不停的缩小,这些技术慢慢的作用于PLC,使其更稳定、可靠及坚固,并带来了功能的进一步提升,比如更快速的处理器,可扩充的内存能力及新的特色通讯机制等。
为响应市场需求,许多特性和功能正在从高往低端PLC迁移。例如,我们可以预期未来的小型PLC将拥有更多gao端PLC的特性,而中gao端PLC也将提供更小、更紧凑的解决方案,过载保护自动化控制柜,以满足客户的需求。
同时,PLC也因内存成本和尺寸的减少而获益。这些优势极大地提升本地化数据存储能力,允许将PLC用在之前需要昂贵的数据抓取系统的应用场合。这也为其他功能的实现带来可能性,比如产品信息的板载存储,以便于加快故障排除。
今天的PLC也从USB技术中受益匪浅,使得联网、编程及对控制系统的监控变得容易。随着USB技术的持续进步,以及更小的迷你USB连接器的出现,你可以期待在更多的小型PLC上看到这种通讯选项。
另外一个的例子是,从快速变化的消费类电子世界快速渗透到工业市场的非易失性便携存储设备。通过在一个小小的封装里面提供大量的附加存储空间,它们给PLC的用户带来了非常大的好处。这些可能的选项包括USB装置,销售自动化控制柜,SD卡,miniSD以及MicroSD卡等,从而为终用户、机械制造商及系统集成商增加高达32GB的额外存储空间。
PLC和PAC的融合
许多工业控制器供应商还在以PAC和PLC之间的异同为卖点,郑州自动化控制柜,但是未来的自动化工程师考虑他们的系统时,可能不会关心到底是何许名字,他们只会专注于性能和实际的功能。就像这两种设备的定义和特性不断演变样,PLC和PAC将会彼此融合发展。
基于这种演变,在低端和gao端市场会出现大量的机会。随着硬件技术的进步,先进的功能将进入低端处理器。这将反过来推动供应商将更多功能和选择融入高duan产品中。
高速处理器和更多的存储空间将会促进高功能的应用,比如运动控制、视觉系统的集成及多种通讯协议的协同支持。当然,PLC也将依旧保持其简单的特性来吸引更多用户。
在PAC与PLC相互融合期间,我们可以看到这两种产品自身不断地完善和进步。PAC可以允许用户在传统意义的工业自动化的领域进行拓展,鼓励供应商研发新的产品来满足客户的需求。
这些需求向产品设计者发起挑战:迫使他们寻找新的方向,如支持现有的元器件构建一个新的系统以满足严酷的工业环境。未来的挑战将包括提供可连接性,存储的扩展能力,以及控制器处理能力的提升,以应对日益复杂的应用,同时还要求维持甚至降低终产品的成本。
梯形语言:不说再见
50年前,硬接线的继电器逻辑被梯形语言替代,这种语言为熟悉继电器逻辑的技术人员和工程人员带来了便利,但是它也有其局限性,尤其是在过程控制及数据处理应用中。
IEC61131-3提供了对于工业控制器的另一种编程语言,但是梯形语言还是有其自身的优势,并且一直显示着它的魅力。虽然对于过程控制来说,有连续功能图示,结构化的文本对于数据处理也是不错的,其他的IEC语言也有自己的优点。但是梯形语言仍将是PLC编程语言。
供应商及他们的客户采购内置梯形语言逻辑编程的PLC,并使用此类的PLC控制大量的基础设备。也有大量的工程师、技术员、电器工程师及维护工人倾向于梯形语言这种简单的编程技术。不论硬件如何发展,这种语言还会作为PLC的工业标准持续很久。
虽然梯形逻辑语言可以作为简单的机器控制的基石,但功能块编程技术可以减少代码数量,尤其是需要将PLC代码融入统一编程环境的时候。
统一的编程环境
将PLC、运动控制及人机界面(HMI)的编程结合到一个统一的环境,是未来几年的一种趋势。将PLC和HMI集成在同一机架上可能会成为下一个趋势,不管显示器是包含在组件中还是作为外部选项。无论同样的处理器还是集成到PLCI/O机架的HMI模块,当前的技术都能够支持这两种方式的组态。
有一个编程环境对于大多数用户来说是理想的,只要不是太复杂。这些模块结合的好处包括减少学习周期和研发时间。但是,如果这个编程环境并不是设计合理,那么将会变得笨重的和不易操作。
拥有统一的编程环境的重要一步是确保设备之间可以共享同一个标签名数据库。标签名是在程序和过程之间的重要连接。建立数据库是一项耗时的工程,减少这些重复的任务会缩短整体研发时间并减少错误几率。
迎接无线的时代
在过去的几十年特别是90年代早期,在工业应用领域出现了大量的不同的通讯网络和协议。随着时间的推移,这些不同的选择逐渐剩下几。跟消费类电子PC与其外设一样,这种趋势将会持续,未来会聚焦于可以自我配置的即插即用方案。
其实并没有必要去关注这些通讯技术是否能达到真正的实时,因为以太网和其他许多工业控制网络的原始速度是远远快于绝大多数应用的需求的。
关于本地存储设备和其他装置的通用接口,USB虽可用,但是有其限制。USB是即插即用的,但是给USB集成硬件和软件是需要设备供应商额外投入的。正因如此,工业硬件供应商的缓慢变化,如条码识别器和电子称等硬件供应商在短期内仍将采用RS232接口。
目前,高PLC的通讯接口可以适应多种协议。预计未来随着用户需求的标准化,短路保护自动化控制柜,这种情况有望得到改观,可能仅仅只有以太网和无线形式,或者再加上一种可能的选项工业蓝牙。
这是一个无线的时代,但是,在我们看到商业和工业无线通讯协议的大融合之前,工业应用确实需要在更广范围内具有鲁棒性的无线技术,并确保数据的完整性。
在这个领域内,我们也看到了进步:从新的Wi-Fi(802.11n),ZigBee(802.15.4)协议到点对点连接,网状连接及蓝牙和近场通讯的兴起,但是目前这些并没有成为执行关键任务的工厂底层适用的解决方案。未来在适合无线应用的远程终端设备(RTU),或者一些非关键的监控应用(不要求实时控制)中,或将更广泛地采用无线技术。
全集成工厂
在PLC的未来引人注目的变化应该是实现企业资源规划(ERP)系统或其他高层级系统与工厂层的集成。在过去,主要的一体化任务是提取机器和过程数据,并将之向上传到那些高层级系统。未来,采用hooks和函数等的新技术将会简化这种集成。
鉴于此,控制器制造商在设计PLC解决方案时,需要更多地考虑用户的需求。这种方案不仅仅用于控制,同时还能够实现无缝操作,并提供数据给需要的用户。这可能包括提供通过浏览器或者移动app提供数据的接入,或者包括接入数据库的工具。
增强的通讯、提高的处理速度和更大的存储容量赋予PLC管理自己产生的数据的能力。这是PLC的自然发展趋势。
虽然形式、用途和性能将会有大幅度的变化,但是在未来,PLC这个名词依然会作为很多的工业自动化控制器的名字延续下去。PLC的尺寸会持续减小,硬件的发展也将为PLC带来新的特性和功能。软件和通讯能力的提升,将赋予PLC这个悠久的名字一个全新的定位——工业自动化平台。
自动化控制柜1、以下操作危险,要非常小心:
a) 编程器在线状态下,按“STOP”按钮,或者在菜单中选择“STOP”,都将导致PLC停机。
b) 编程器在线状态下,下zai整个项目,将导致PLC停机。
c) 编程器在线状态下,修改硬件配置,将导致PLC停机。
2、在改动程序前,要做好备份。
3、可以利用离线仿zhen器和备份程序多进行练习:
a) 在菜单中选择仿zhen器;
b) 重新生成项目(Rebuild All Project)并下zai。
c) 进行各种操作练习。
4、INTOUCH访问施耐德PLC变量的寻址规则:
a) DI以1开头,且要补足6位,例如:100417,访问的是地址为417的DI。
b) DO和M以0开头,且要补足6位,例如:000417,访问的是地址为417的DO。
c) MW以4开头,且要补足6位,例如:400417,访问的是MW417。若访问的是实数,则为:400417 F。
d) %M区域用于中间变量和DO的寻址空间,一般DO用低位地址,中间变量用高位地址。
e) %MW区域与%M区域为相互独立的区域(西门子为重叠区域)。
f) PLC中无地址的中间变量不能被INTOUCH访问。
5、变量表(Variables & FB instances):
a) used列里显示在程序里用到的次数。如果被画面访问,则不计数。因此,如果某变量显示没有被使用,也可能被画面使用。
6、程序的一致性:
a) 在线和离线程序如果不一致,将不可以在线。若找不到一致的程序,可kao的办法是从PLC上载一个程序(包括动态变量表以外的所有信息)并存盘即可。(下zai不一致的离线程序会导致PLC停机)
b) 简单的程序修改要在线修改,基本过程:在线->修改->自动发现不同->生成并下zai变更部分(Build Project)->断开,选择上传信息->离线保存。
c) 强制变量不会影响一致性。
d) 修改硬件会导致程序不一致。
7、交叉索引:
a) 查找板卡的变量:打开板卡->选择变量类型->刷新,出现变量列表->拷贝需查找的变量名字->搜索该变量。
b) 查找程序中的变量:双击程序的变量->选择名字->搜索该变量
c) 注意:如果要查找程序中的使用位置,需要用名字(Name)进行搜索,而不能用地址(Addresses)。
d) 从HMI反查变量:
① HMI变量查到PLC内的绝地地址
② 程序搜索到符号名
③ 用符号名搜索变量的使用位置。
8、查看变量事情情况自动化控制柜
a) 打开CPU配置,查看Configuration
b) da区域配置
c) 通过Viewer查看各种变量是否使用(无法统计画面的访问情况)。
9、CPU同步
在线修改程序时,只会修改主CPU的,在调试完成后,需要手工同步到备用CPU:
1)按ESC
2)按→选择PLC OP
3)按→进入菜单
4)按↑,选择Hot Standby
5)按→进入
6)按↑,选择Transfer
7)按→,并按Enter确认,开始传送。自动化控制柜
姓名: | 王继刚 ( 销售经理 ) |
手机: | 18903837318 |
业务 QQ: | 272925472 |
公司地址: | 河南省郑州市高新区继飞机电 |
电话: | 0371-55581867 |
传真: | 0371-55581867 |
Copyright © 2025 继飞机电 版权所有